skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghimire, Prashant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electrohydrodynamic (EHD) printing has been used in various applications (e.g., sensors, batteries, photonic crystals). Currently, research on studying the relationships between EHD jetting behaviors, material properties, and processing conditions is still challenging due to a large number of parameters, cost, time, and the complex nature of experiments. In this research, we investigated EHD printing behavior using a machine learning (ML)-guided approach to overcome limitations in the experiments. Specifically, we investigated two jetting modes and the size of printed material with a broader range of material properties and processing parameters. We used samples from both literature and our own experiment results with different type of materials. Different ML models have been developed and applied to the data. Our results have shown that ML can navigate a vast parameter search space to predict printing behavior with an accuracy of higher than 95% during EHD printing. Moreover, the results showed that ML models can be used to predict the printing behavior and feather size for new materials. The ML models can guide the investigation of EHD printing and helped us understand the printing behavior in a systematic manner with reduced time, cost, and required experiments. 
    more » « less
  2. Abstract Biological invasions are usually examined in the context of their impacts on native species. However, few studies have examined the dynamics between invaders when multiple exotic species successfully coexist in a novel environment. Yet, long‐term coexistence of now established exotic species has been observed in North American lady beetle communities. Exotic lady beetlesHarmonia axyridisandCoccinella septempunctatawere introduced for biological control in agricultural systems and have since become dominant species within these communities. In this study, we investigated coexistence via spatial and temporal niche partitioning amongH. axyridisandC. septempunctatausing a 31‐year data set from southwestern Michigan, USA. We found evidence of long‐term coexistence through a combination of small‐scale environmental, habitat, and seasonal mechanisms. Across years,H. axyridisandC. septempunctataexperienced patterns of cyclical dominance likely related to yearly variation in temperature and precipitation. Within years, populations ofC. septempunctatapeaked early in the growing season at 550 degree days, whileH. axyridispopulations grew in the season until 1250 degree days and continued to have high activity after this point.C. septempunctatawas generally most abundant in herbaceous crops, whereasH. axyridisdid not display strong habitat preferences. These findings suggest that within this regionH. axyridishas broader habitat and abiotic environmental preferences, whereasC. septempunctatathrives under more specific ecological conditions. These ecological differences have contributed to the continued coexistence of these two invaders. Understanding the mechanisms that allow for the coexistence of dominant exotic species contributes to native biodiversity conservation management of invaded ecosystems. 
    more » « less